

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Głębokie uczenie w zastosowaniu do oceny stanu i charakteryzacji materiałów

Centrum Inżynierii Pól Elektromagnetycznych i Technik Wysokich Częstotliwości, Wydział Elektryczny, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Centrum Inżynierii Pól Elektromagnety cznych i Technik

Wysokich Częstotliwości Centrum rozpoczęło działalność 1 stycznia 2021 roku. Do głównych zadań Centrum należą badania podstawowe i stosowane w zakresie fal elektromagnetycznych wysokiej częstotliwości (pasma radiowe, mikrofalowe, terahercowe, podczerwone) oraz inżynierii pola elektromagnetycznego, w tym magnetyzmu, oddziaływania pól silnych oraz dynamiki namagnesowania i towarzyszących mu zjawisk termicznych.

Laboratoria:

- Laboratorium Aktywnej Termografii Podczerwonej
- Laboratorium Anten i Technik Wysokich Częstotliwości
- Laboratorium Pomiarów Magnetycznych
- Laboratorium Techniki Mikrofalowej
- Pracownia Badań i Certyfikacji EMC
- Pracownia Prototypowania, Obróbki i Inspekcji Wizualnej

Centrum Inżynierii Pól Elektromagnetycznycł i Technik Wysokich Częstotliwości

Plan • Wstęp

- prezentacji
- Metoda Aktywnej termografii (IRT) podejście nr 1 – płytkie sieci neuronowe
 - Próbki i układ pomiarowy
 - Model numeryczny przykładowe wyniki
 - Koncepcja sieci neuronowej i przygotowanie bazy danych
 - Wyniki działania sieci neuronowej dla danych numerycznych i eksperymentalnych
- Metoda Aktywnej termografii (IRT) podejście nr 2 – model uogólniony i sieci LSTM
 - Próbki
 - Uogólniony model numeryczny
 - Koncepcja sieci
 - Przykładowe wyniki
- Połączone metody IRT i inspekcji terahercowej
 - Układ pomiarowy
 - Rejestracja danych z dwóch systemów
 - Architektura wybranej sieci neuronowej
 - Przykładowe wyniki

• Druk 3D, zwany także wytwarzaniem addytywnym (AM), jest obecnie szeroko stosowany w wielu gałęziach przemysłu.

Wstęp

- Rozwój technik druku 3D spowodował, że wytwarzane w ten sposób struktury coraz częściej są również produktem finalnym. Takie wykorzystanie tych materiałów sprawia, że ważna jest ocena ich jakości.
- W naszych pracach skupiamy się głównie na kontroli jakości w końcowym etapie produkcji druku 3D.
- Do jakościowej i ilościowej oceny drukowanej struktury wykorzystujemy tutaj dwie nieniszczące techniki badań (NDT) - aktywną termografię w podczerwieni (IRT) oraz obrazowanie terahercowe (THz).
- Nasze cele:
 - zbudowanie modelu numerycznego, wykorzystanie wyników numerycznych do trenowania sieci neuronowej, walidacja wydajności sieci na podstawie wyników eksperymentalnych.
 - Połączenie dwóch metod inspekcji w celu uzyskania lepszych wyników oceny próbek

Technika IRT – podejście nr 1 Próbki oraz układ eksperymentalny

Technika IRT – podejście nr 1 Model numeryczny

- Model został przygotowany w środowisku COMSOL.
- Uproszczony model zakłada, że przepływ ciepła od źródła do próbki jest realizowany tylko poprzez radiację.
- Źródło ciepła zostało zamodelowane jako macierz źródeł punktowych, których moc spada liniowo w kierunku radialnym.
- Model odwzorowuje układ laboratoryjny, stąd zastosowano technikę transmisyjną.
- Tak samo jak w badaniach eksperymentalnych założono, że czas grzania wynosi 60 s, po których następuje 300 s. naturalnego, konwekcyjnego ochładzania.

Technika IRT – podejście nr 1 Przykładowe wyniki – porównanie między wynikami numerycznymi, a eksperymentalnymi

dejście nr 1 t=60 s we wyniki – anie między wynikami nerycznymi, mentalnymi t=60 s

Wybrane punkty: środki defektów

•	•	٠	۲	•	
•	٠	٠	۲	٠	
•	•	٠	•	•	
•	•	•	•	•	
	•	•	•		

304

Porównanie dla defektu D1 – fi 7 mm, głębokość 4.2 mm

Technika IRT – podejście nr 1 Koncepcja sieci neuronowej

- Użyta została sieć neuronowa rozpoznająca wzorce (zaimplementowana w środowisku MATLAB)
- Zadanie wykrycie defektów
- Wejście charakterystyki czasowo temperaturowe (na 1 piksel przypada jedna taka funkcja)
- Wyjście dwie klasy: "defekt", "bez defektu"

Szczegóły projektu sieci:

- 70% danych użytych w procesie uczenia, 15% na walidację i 15% na testowanie. Dane podzielono w sposób losowy
- W procesie uczenia zastosowano metodę gradientu sprzężonego
- Do oceny sieci w każdej epoce użyto entropii krzyżowej

Aproximation function: poly33 The data with approximated surface Data before trend removal Data after trend removal 0 0 0 0

Technika IRT – podejście nr 1 Przygotowanie bazy danych: usunięcie trendu

- Dla każdego termogramu w sekwencji dopasowywana jest powierzchnia
- Dopasowana powierzchnia jest następnie odejmowana od oryginalnego termogramu
- Normalizacja
- Taka sama procedura została zastosowana dla danych numerycznych i eksperymentalnych

Wyniki numeryczne

- Znana była dokładna lokalizacja defektów, co pozwoliło na precyzyjny wybór obszarów z defektami
- Wszystkie piksele z obszarów z defektami i bez defektów zostały zgrupowane w osobnych macierzach
- W rezultacie otrzymano 1605 charakterystyk dla defektów 46795 funkcji dla obszarów bez defektów

Technika IRT – podejście nr 1 Przygotowanie bazy danych: dodawanie szumu do sygnałów

- W celu uzupełnienia bazy danych do otrzymanych sygnałów został dodany biały szum
- W rezultacie utworzono bazę danych zawierającą 964 605 charakterystyk dla obszarów z defektami, i 982 695 charakterystyk dla obszarów bez defektów

Technika IRT – podejście nr 1 Wynik uczenia sieci neuronowej – wykrycie defektów dla danych numerycznych

Output Class

Output Class

	Samples	CE	<u>∞</u> %E
😈 Training:	1363110	2.24683e-0	2.18720e-0
Validation:	292095	6.30100e-0	2.24961e-0
🕡 Testing:	292095	6.30123e-0	2.26022e-0

Technika IRT – podejście nr 1 Wynik uczenia sieci neuronowej – wykrycie defektów dla danych numerycznych

- Poprawienie kontrastu
- Widoczność najmniejszych defektów

Technika IRT – podejście nr 1 Walidacja wyuczonej sieci na danych eksperymentalnych

40 dB - 5 dB

Technika IRT – podejście nr 1 Walidacja wyuczonej sieci na danych eksperymentalnych

Output Class

Output Class

Output Class

40dB - -10dB

Technika IRT – podejście nr 2 Próbki

(a) (b) Próbki drukowane z różnym wypełnieniem – 100% i 30%

Technika IRT – podejście nr 2 Uogólniony model numeryczny

Widok geometrii modelu w programie COMSOL

Parametryzacja modelu – wymiary geometryczne wady i położenie źródła względem wady – rezultat – 885 modeli numerycznych

Technika IRT – podejście nr 2 Przykładowe wyniki eksperymentalne i numeryczne

Technika IRT – podejście nr 2 Przykładowe wyniki eksperymentalne i numeryczne

Technika IRT – podejście nr 2 Przygotowanie bazy danych

- Dla każdego z 885 modeli do dalszej analizy wzięto sekwencje czasowe złożone z 360 obrazów termicznych;
- Z każdego modelu do bazy dołączono po 300 charakterystyk czasowo-temperaturowych dla losowo wybranych pikseli z obszaru wady i 300 charakterystyk z obszaru bez wady;
- W rezultacie otrzymano bazę złożoną z 256 500 charakterystyk dla obszaru wady i 256 500 charakterystyk z obszaru bez wady;
- Bazę podzielono na zbiór uczący, walidacyjny i testowy w proporcjach 0.7:0.15:0.15.

Technika IRT – podejście nr 2 Sieć LSTM

Confusion matrix

		Predicted Class	
		Non-defect	Defect
A stual class	Non-defect	49.37%	0.63%
Actual class	Defect	0.08%	49.92%

Wyniki dla przykładowych parametrów

Accuracy	Recall	Selectivity	Precision
99.30%	99.84%	98.75%	98.76%

Technika IRT – podejście nr 2 Wyniki dla danych numerycznych

Confusion matrix dla obu próbek

Defect 11.36% 3.18%

Precision

21.88%

	Predicted Class				Predicted Class			
Technika IRT –				Non-defect	Defect			Non-defect
podejście nr 2	Actual class	N	on-defect	88.50%	7.31%	Actual class	Non-defect	84.25%
			Defect	1.21%	2.98%		Defect	1.20%
Walidacja sieci na		100%				30%		
danych	Wyniki dla przykładowych parametrów							
eksnervmentalnych								
cksperymentalityen	Accuracy	Recall	Selectivity	Pr	ecision	Accuracy	Recall	Selectivity
	91 48%	71.07%	92.37%	2	8 93%	87.43%	72.57%	88.12%

92.37%

91.48%

71.07%

28.93%

Połączone metody THz i IRT Laboratoryjny układ obrazowania terahercowego

Zachodniopomorski Universitet, Technologiczny le Szczectniel

Połączone metody THz i IRT Rejestracja danych Model próbki SM (SM) Konfiguracja kamery IRT **∥** IRT: IRT': (x_1, y_1, t_1) (x, y, t)Rejestracja danych THz': THz: Przepróbkowanie (x, y, t) (x_2, y_2, t_2) sygnału y Ścieżka ruchu głowicy THz Implementacja Dopasowanie Dopasowanie Ekstrakcja punktów modelu – usunięcie punktów modelu kontrolnych dystorsji

kontrolnych

transformacji

Т

geometrycznych

e Secrectriki

Mapa defektów

0 – "bez defektu" (niebieska) 1 – "defekt" (żółta)

Wizualizacja lokalizacji punktów wybranych do uczenia sieci LSTM

- 🗘 Dane uczące
- 🕱 Dane walidacyjne

Przygotowanie bazy danych

Połączone metody

THz i IRT

Dane testujące

Liczba wszystkich punktów pomiarowych: 198x198 = 39204 26 group: 1 – bez defektów 25 – defekty o różnych średnicach i głebokościach

- Każdy punkt reprezentuje 2 cechy odpowiadające dwóm technikom pomiarowym
- Wybrano losowo 2260 przypadków ze wszystkich 39204, gdzie 1130 reprezentowało klasę 0 (bez defektu).
- Zbiór uczący (70%), walidacyjny (15%) i testujący (15%)

Połączone metody THz i IRT Struktura sieci LSTM

Połączone metody THz i IRT Weryfikacja dla danych eksperymentalnych

Mapa lokalizacji defektów

Wnioski

- Wnioski i dalsze prace
 Uzyskane wyniki wskazują na duży potencjał zastosowania technik modelowania numerycznego do generowania baz danych, które można skutecznie wykorzystać do analizy rzeczywistych wyników pomiarowych.
 - Proste dodanie szumu znacznie poprawia skuteczność wykrywania defektów w rzeczywistych termogramach uzyskanych z pomiarów.
 - Wyniki z modelu uogólnionego użyte do uczenia sieci typu LSTM pozwalają na zwiększenie skuteczności i elastyczności metody.
 - Połączenie IRT z innymi rodzajami inspekcji poprzez fuzję danych przy użyciu głębokich sieci neuronowych zapewnia znacznie lepsze wyniki niż przy użyciu jednej techniki.

Dziękuję za uwagę

