

Robotyka Orbitalna

Fatina Liliana Basmadji Centrum Badań Kosmicznych PAN

Seminarium Nowoczesne zastosowania metod teorii sterowania 17.11.2023, Zielona Góra

Śmieci kosmiczne

Źródło: orbitaldebris.jsc.nasa.gov

Śmieci kosmiczne

Źródło: orbitaldebris.jsc.nasa.gov

Śmieci kosmiczne - zagrożenie

Szyba w module cupola na Międzynarodowej Stacji Kosmicznej, 2016 r. Źródło: ESA.

Radiator promu kosmicznego Endeavour po misji STS-118, 2007 r. Źródło: NASA.

Skrzydło promu kosmicznego Discovery podczas misji STS-114, 2005 r. Źródło: NASA.

Aktywne usuwanie śmieci kosmicznych (ADR – Active Debris Removal)

e.Deorbit Źródło: ESA

Aktywne usuwanie śmieci kosmicznych (ADR – Active Debris Removal)

Żródło zdjęć: Robin Biesbroek, Sarmad Aziz, Andrew Wolahan, Stefano Cipolla, Muriel Richard-noca, Luc Piguet: The ClearSpace-1 mission: ESA and ClearSpace team up to remove debris. In: 8th European Conference on Space Debris, 20 April 2021 - 23 April 2021, Darmstadt, Germany, published by ESA Space Debris Office.

Aktywne usuwanie śmieci kosmicznych (ADR – Active Debris Removal)

Astroscale COSMIC UK ADR Mission Concept of Operations

Astroscale Ltd ©2021

Koncepcja misji Cosmic UK. Źródło: Astroscale 3

Serwisowanie satelitów na orbicie (OOS – On-orbit servicing)

Projekt TITAN Źródło: PIAP Space

Serwisowanie satelitów na orbicie (OOS – On-orbit servicing)

Projekt EROSS IOD (European Robotic Orbital Support Services In Orbit Demonstrator) Źródło: Thales

Budowanie dużych struktur na orbicie (OOA – On-orbit Assembly)

Źródło: M.A. Roa, et al.: PULSAR: Testing the technologies for on-orbit assembly of a large telescope. In 16th ESA Workshop on Advanced Space Technologies for Robotics and Automation, ASTRA, Noordwijk, 2022.

Metody przechwytywania satelity

Manipulator (A), Sieci (B), Mechanizm zaciskowy (C), Przechwycenie magnetyczne (D), Harpun (E). Źródło (A,B,C): ESA, Źródło (D) Astroscale, Źródło (E) University of Surrey

Różnice pomiędzy manipulatorem "ziemskim" a "satelitarnym"

Manipulator w warunkach ziemskich

Manipulator w warunkach orbitalnych

Przykładowe misje

Misja e.Deorbit Phase B1 Study (2015-2016) 1/2

- Misja ESA do zademonstrowania technologii ADR.
- Konsorcjum kierowane przez OHB. Aktywności w CBK PAN:
 - 1. prace koncepcyjne nad alternatywnymi rozwiązaniami dotyczących chwytaków oraz mechanizmów zaciskowych,
 - 2. symulacje numeryczne kontaktu podczas chwytania,
 - 3. eksperymenty chwytania przeprowadzone na stanowisku testowym.

Misja e.Deorbit Phase B1 Study (2015-2016) 2/2

Misja e.Deorbit Consolidation Phase (2018)

- Konsorcjum kierowane przez Airbus Defence & Space.
- Zadania CBK PAN:
 - 1. opracowanie układu sterowania siłowego 6 DoF dla manipulatora,
 - 2. weryfikacja opracowanego układu sterowania siłowego w oparciu o symulacje numeryczne.

e.Deorbit Źródło: ESA

Misja e.Deorbit Consolidation Phase (2018)

CBK

Misja e.Deorbit Consolidation Phase (2018)

Odległość między mechanizmem zaciskowym a pierścieniem LAR: sterowanie pozycyjne.

Odległość między mechanizmem zaciskowym a pierścieniem LAR: sterowanie impedancyjne.

W lipcu 2020 roku, CBK PAN rozpoczęło swój udział w misji ClearSpace-1. W CBK PAN zostały przeprowadzone eksperymenty, w których manewr przechwycenia obiektu na orbicie przeprowadzany jest za pomocą robotycznej makiety satelity wyposażonej w system chwytający. Chwytany cel również symulowany jest za pomocą makiety, obydwa obiekty poruszają się na specjalnych platformach poruszających się na łożyskach powietrznych. Umożliwia to przeprowadzanie testów w warunkach symulowanej mikrograwitacji w ruchu płaskim. CBK odpowiadało za projekt, wykonanie i testy przeskalowanego systemu do testów. Analiza zebranych podczas eksperymentów danych stanowiła wsparcie dla inżynierów z Clear Space podczas projektowania docelowego systemu.

Żródło zdjęcia: Robin Biesbroek, Sarmad Aziz, Andrew Wolahan, Stefano Cipolla, Muriel Richard-noca, Luc Piguet: The ClearSpace-1 mission: ESA and ClearSpace team up to remove debris. In: 8th European Conference on Space Debris, 20 April 2021 - 23 April 2021, Darmstadt, Germany, published by ESA Space Debris Office.

Przykładowe prace

Planowanie ruchu manipulatora satelitarnego przy niezachowanym pędzie i momencie pędu

Pozycja członu roboczego pierwszego manipulatora w układzie inercjalnym:

 $\mathbf{r}_{ee1} = \mathbf{r}_s + \mathbf{r}_{q1} + \sum_{i=1}^{n_1} \mathbf{l}_i$

Prędkość kątowa i liniowa końcówki roboczej pierwszego manipulatora:

$$\boldsymbol{\omega}_{ee1} = \boldsymbol{\omega}_s + \sum_{i=1}^{n_1} \mathbf{k}_{1i} \dot{\theta}_{1i}$$

$$\mathbf{v}_{ee1} = \mathbf{v}_s + \boldsymbol{\omega}_s \times (\mathbf{r}_{ee1} - \mathbf{r}_s) + \sum_{i=1}^{n_1} \left[\mathbf{k}_{1i} \times (\mathbf{r}_{ee1} - \mathbf{r}_{1i}) \right] \dot{\theta}_{1i}$$

Prędkość końcówki roboczej pierwszego manipulatora w układzie inercjalnym:

$$\begin{bmatrix} \mathbf{v}_{ee1} \\ \boldsymbol{\omega}_{ee1} \end{bmatrix} = \mathbf{J}_{s1} \begin{bmatrix} \mathbf{v}_s \\ \boldsymbol{\omega}_s \end{bmatrix} + \mathbf{J}_{M1} \dot{\boldsymbol{\theta}}_1 \quad \text{gdzie:} \quad \mathbf{J}_{s1} = \begin{bmatrix} \mathbf{I} & \tilde{\mathbf{r}}_{ee1_s}^T \\ \mathbf{0}_{3\times 3} & \mathbf{I} \end{bmatrix} \quad \mathbf{J}_{M1} = \begin{bmatrix} \mathbf{k}_{11} \times (\mathbf{r}_{ee1} - \mathbf{r}_{11}) & \cdots & \mathbf{k}_{1n_1} \times (\mathbf{r}_{ee1} - \mathbf{r}_{1n_1}) \\ \mathbf{k}_{11} & \cdots & \mathbf{k}_{1n_1} \end{bmatrix}$$

Zgodnie z zasadą pracy wirtualnej, związek pomiędzy momentami sterującymi na przegubach manipulatora a siłami i momentami zewnętrznymi działającymi na końcówki robocze można zapisać następująco:

$$\mathbf{w}_{\mathbf{x}} = \mathbf{J}_{M_x}^T \begin{bmatrix} \mathbf{F}_{e_x} \\ \mathbf{H}_{e_x} \end{bmatrix}$$

Pęd i moment pędu układu satelity z dwoma manipulatorami na którego działają siły i momenty zewnętrzne można zapisać następująco:

$$\begin{bmatrix} \mathbf{P} \\ \mathbf{L} \end{bmatrix} = \mathbf{H}_2 \begin{bmatrix} \mathbf{v}_s \\ \boldsymbol{\omega}_s \end{bmatrix} + \begin{bmatrix} \mathbf{H}_{31} \ \mathbf{H}_{32} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{\theta}}_1 \\ \dot{\mathbf{\theta}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{f}_m \\ \mathbf{f}_{am} \end{bmatrix} + \begin{bmatrix} \mathbf{P}_0 \\ \mathbf{L}_0 \end{bmatrix}$$

$$\mathbf{f}_m = \int_{t_0}^{t_f} \left(\mathbf{F}_s + \mathbf{J}_{s1}^T \mathbf{F}_{e_1} + \mathbf{J}_{s2}^T \mathbf{F}_{e_2} \right) dt,$$

$$\mathbf{f}_{am} = \int_{t_0}^{t_f} \left(\mathbf{H}_s + \mathbf{J}_{s1}^T \mathbf{H}_{e_1} + \mathbf{J}_{s2}^T \mathbf{H}_{e_2} + \tilde{\mathbf{r}}_{s_g} \left(\mathbf{F}_s + \mathbf{J}_{s1}^T \mathbf{F}_{e_1} + \mathbf{J}_{s2}^T \mathbf{F}_{e_2} \right) \right) dt$$

- **F** Zewnętrzne siły działające na satelitę, końcówkę roboczą pierwszego i drugiego manipulatora.
- **H** Zewnętrzne momenty działające na satelitę, końcówkę roboczą pierwszego i drugiego manipulatora.

$$\mathbf{r}_{s_g} \,=\, \mathbf{r}_g - \mathbf{r}_s$$

- \mathbf{r}_g Środek masy całego układu.
- \mathbf{r}_s Środek masy satelity.

Pęd i moment pędu układu satelity z dwoma manipulatorami na którego działają siły i momenty zewnętrzne można zapisać następująco:

$$\begin{bmatrix} \mathbf{P} \\ \mathbf{L} \end{bmatrix} = \mathbf{H}_2 \begin{bmatrix} \mathbf{v}_s \\ \boldsymbol{\omega}_s \end{bmatrix} + \begin{bmatrix} \mathbf{H}_{31} \ \mathbf{H}_{32} \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{\theta}}_1 \\ \dot{\boldsymbol{\theta}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{f}_m \\ \mathbf{f}_{am} \end{bmatrix} + \begin{bmatrix} \mathbf{P}_0 \\ \mathbf{L}_0 \end{bmatrix}$$

Zakładają zerowy początkowy pęd i moment pędu, prędkość kątowa i liniowa satelity przyjmą postać:

$$\begin{bmatrix} \mathbf{v}_s \\ \boldsymbol{\omega}_s \end{bmatrix} = \mathbf{H}_2^{-1} \left(\begin{bmatrix} \mathbf{f}_m \\ \mathbf{f}_{am} \end{bmatrix} - \begin{bmatrix} \mathbf{H}_{31} & \mathbf{H}_{32} \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{\theta}}_1 \\ \dot{\boldsymbol{\theta}}_2 \end{bmatrix} \right)$$

Prędkość końcówki roboczej pierwszego i drugiego manipulatora w układzie inercjalnym przyjmą postać:

$$\begin{bmatrix} \mathbf{v}_{ee1} \\ \boldsymbol{\omega}_{ee1} \end{bmatrix} = \mathbf{J}_{s1}\mathbf{H}_{2}^{-1}\begin{bmatrix} \mathbf{f}_{m} \\ \mathbf{f}_{am} \end{bmatrix} + (\mathbf{J}_{M1} - \mathbf{J}_{s1}\mathbf{H}_{2}^{-1}\mathbf{H}_{31})\dot{\theta}_{1} - \mathbf{J}_{s1}\mathbf{H}_{2}^{-1}\mathbf{H}_{32}\dot{\theta}_{2}$$
$$\begin{bmatrix} \mathbf{v}_{ee2} \\ \boldsymbol{\omega}_{ee2} \end{bmatrix} = \mathbf{J}_{s2}\mathbf{H}_{2}^{-1}\begin{bmatrix} \mathbf{f}_{m} \\ \mathbf{f}_{am} \end{bmatrix} - \mathbf{J}_{s2}\mathbf{H}_{2}^{-1}\mathbf{H}_{31}\dot{\theta}_{1} + (\mathbf{J}_{M2} - \mathbf{J}_{s2}\mathbf{H}_{2}^{-1}\mathbf{H}_{32})\dot{\theta}_{2}$$

Równanie dynamiki systemu robota kosmicznego w obecności zewnętrznych sił i momentów:

$$\mathbf{M}(\mathbf{q}_{p})\dot{\mathbf{q}}_{v} + \mathbf{C}(\mathbf{q}_{v}, \mathbf{q}_{p}) = \begin{bmatrix} \mathbf{F}_{sc} \\ \mathbf{H}_{sc} \\ \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{bmatrix} + \begin{bmatrix} \mathbf{F}_{s} \\ \mathbf{H}_{s} \\ \mathbf{0}_{n_{1}\times 1} \\ \mathbf{0}_{n_{2}\times 1} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3\times 6} \\ \mathbf{0}_{3\times 6} \\ \mathbf{J}_{M1}^{T} \\ \mathbf{0}_{n_{2}\times 6} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{e_{1}} \\ \mathbf{H}_{e_{1}} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3\times 6} \\ \mathbf{0}_{3\times 6} \\ \mathbf{0}_{n_{1}\times 6} \\ \mathbf{J}_{M2}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{e_{2}} \\ \mathbf{H}_{e_{2}} \end{bmatrix}$$

gdzie: $\mathbf{q}_p = \begin{bmatrix} \mathbf{r}_s & \mathbf{\Theta}_s & \mathbf{\theta}_1 & \mathbf{\theta}_2 \end{bmatrix}^T$ $\mathbf{q}_v = \begin{bmatrix} \mathbf{v}_s & \mathbf{\omega}_s & \dot{\mathbf{\theta}}_1 & \dot{\mathbf{\theta}}_2 \end{bmatrix}^T$

Zewnętrzne siły i momenty działają na satelitę.

Zewnętrzne siły i momenty działają na EE oraz na satelitę.

Styczne przechwytywanie niekontrolowanego satelity celu

K. Seweryn, F. L. Basmadji, T. Rybus: "Space Robot Performance During Tangent Capture of an Uncontrolled Target Satellite". The Journal of the Astronautical Sciences 69, 1017–1047 (2022).

Capture phase:

$$\mathbf{M}(\mathbf{q}_p)\dot{\mathbf{q}}_v + \mathbf{C}(\mathbf{q}_p, \mathbf{q}_v) = \begin{bmatrix} \mathbf{F}_{ch} \\ \mathbf{H}_{ch} \\ \mathbf{\tau} \end{bmatrix}$$

Rigidization phase:

Dla przegubów 1, 3 oraz 7:

$$\tau_i = k_{vel} t^2 \left(\dot{\theta}_{id} - \dot{\theta}_{ia} \right)$$

Dla pozostałych przegubów:

$$\tau_i = k_{pos} t^2 \left(\theta_{id} - \theta_{ia} \right) + k_{vel} t^2 \left(\dot{\theta}_{id} - \dot{\theta}_{ia} \right)$$

K. Seweryn, F. L. Basmadji, T. Rybus: "Space Robot Performance During Tangent Capture of an Uncontrolled Target Satellite". The Journal of the Astronautical Sciences 69, 1017–1047 (2022).

Styczne przechwytywanie niekontrolowanego satelity celu Tangent capture Free-floating robot Forced synchronous motion

K. Seweryn, F. L. Basmadji, T. Rybus: "Space Robot Performance During Tangent Capture of an Uncontrolled Target Satellite". The Journal of the Astronautical Sciences 69, 1017–1047 (2022).

Styczne przechwytywanie niekontrolowanego satelity celu

K. Seweryn, F. L. Basmadji, T. Rybus: "Space Robot Performance During Tangent Capture of an Uncontrolled Target Satellite". The Journal of the Astronautical Sciences 69, 1017–1047 (2022).

Planowanie bezkolizyjnych trajektorii

T. Rybus, M. Wojtunik, F. L. Basmadji: "Optimal collision-free path planning of a free-floating space robot using spline-based trajectories". Acta Astronautica, Volume 190 (2022).

Planowanie bezkolizyjnych trajektorii

T. Rybus, M. Wojtunik, F. L. Basmadji: "Optimal collision-free path planning of a free-floating space robot using spline-based trajectories". Acta Astronautica, Volume 190 (2022).

Testowanie technologii kosmicznych

Testy na Ziemi

Manipulator na stanowisku odciążającym Źródło: CBK PAN

Loty paraboliczne Źródło: ESA, Novespace

ZARM Wieża zrzutu Źródło: ESA

Neutral Buoyancy Źródło: DFKI

Ramienia robotyczne Źródło: GMV

Stanowiska do symulacji warunków mikrograwitacji Źródło: CBK PAN

BK

CBK

W ostatnim czasie, w ramach projektu "Opracowanie i walidacja układu sterowania manipulatora satelitarnego" finansowanego przez NCBiR opracowano nowe komponenty: makieta satelity celu oraz chwytak.

Źródło: CBK PAN

Przykładowe eksperymenty

Stanowisko testowe w CBK PAN – przykłady eksperymentów

Stanowisko testowe w CBK PAN – przykłady eksperymentów

Stanowisko testowe w CBK PAN – przykłady eksperymentów

Stanowisko testowe w CBK PAN – dodatkowe możliwości

Sfera wraz z łożyskiem sferycznym Źródło: CBK PAN

Dziękuję za uwagę!

fbasmadji@cbk.waw.pl