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Satellite with a solar panel

42

#x

Figure 1: Satellite with a solar panel
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Plant equations of motion

o Plant

fOIa) = KB — alb) +bEE) — &) +u(b),
EG'{ pit) = —KB() — alb) — b(AE) — ab), @

with some initial conditions.

u(t) is an input torque, regarded as an input,

o(t) is a satellite angular displacement, a measured signal regarded as an output,
B(t) is a panel angular displacement, an unmeasured signal,

I is a satellite rotational inertia,

p is a panel rotational inertia,

k is a stiffness coefficient,

®© © 6 ¢ o o o

b is a friction coefficient.

@ Assume: I >0,p >0,k >0and b > 0 (incl. b = 0).

@ In practice, I, p, k and b cannot be measured exactly, they are uncertain.
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Uncertain parameters

@ Known intervals
IE (Imiru Imax) ) p S (pmirupmax) 5 k S (kminykmax) 5 b S (bmim bmax) .
@ Nominal (mean) values

Imin + Imax
2 ’
o Weight coefficients

_ Pmin + Pmax _ kmin + kmax _ bmin + bmax

p(0)

WI _ Imax - Imin , Wp — Pmax — Pmin , _ ,
2 2 2
@ Uncertain real parameters in additive forms
I(61) = 1(0) + Widr,  p(dp) = p(0) + Wpdp , k() = k(0) + Widx, b(dp) = b(0) + Wy,
where 6y, dp, 6, and 8y, are normalized uncertainties, i.e.

‘5I‘<17 |5P|<17 |5k‘<17 |5b|<1
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1 Introduction

More explicit form of the plant

@ We interpret the nominal parameters I(0), p(0), k(0) and b(0) as real measurements and Wy, Wy,

Wy and W, describe bounds o

o It follows
I min

Imax

kmin
kmax

o The joint uncertainty

m the errors.

1(0) + W,

k(O) - Wk { bmin
k(0) + Wy

1(0) — W, { Pmin

Pmax

bmax

§:= ((Sla 6}’7 6k7 (Sb) ’

o The plant in the explicit uncertain form

[ e
Be(0) : { p(5)A()

where
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= k(G (B(D) — alt)) +b(6) (B(t) — a(b) +ut),
= k(&) (B() — a(t)) = b(8)(B(E) — &(t)) -

@ u(t) consists of a control torque (

ut) =7(t) +d(t), t=>0,

d(t) =dp =const, t>0,
with an unknown magnitude dy € R.
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p(0) — W,
p(0) + Wp

b(0) — W,
b(0) + W,

t) and a disturbance torque d(t), i.e.

)

@

©)

©)

©)
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Formulation of the control problem
® Reference signal

or(t) =asinwit, a>0, w>0, (6)
o Control error
e(t) = a(t) — ax(t). 7)
o Control goal (asymptotic tracking)
lim e(t) =0 (8
t—ro0
for all disturbances dj € R.

o Dynamic error feedback controller
5CK (t) — AK Bk XK (t) (9)
() Ck Dk e(t) |’
where (xx(t));>0 C R and e(t) is the only signal available to the controller.

o Unit feedback control system (Figure 2)

[

(t)

o) ~el o T(t)éu(t) P 0

Figure 2: Error feedback control system
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Uncertain plant state space model

@ State variables

X1 «
X2 _ B
X3 CM
Xy B
o Plant state space model
0 0 1 0 0
i 0 0 0 1 0
i _KO)  K(G) b)) b(%) | 1
36 () : X = I(4r) I(ér) I(6r) 1(6r) I(ér)
SR O I Y% G 1 S G (V0
a p(ép) pp)  p(%) P(ép)
1 0 0 0o | o

o Simplified state space model of the uncertain plant

o [4-[2pe] )

@ X;(0) is referred to as the uncertain plant model.

Z. Emirsajtow, T. Barciniski
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X1
X2

X4

)

(10)

1n

12)
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Nominal plant state space model

o Plant state space model with § =0

s Bl-pRpRllE o
where . X 1 0 0
0 0 0 1 0
KO KO b)) b0 | 1
A) | BO) | _ e
i il A I B
1 0 0 0 | :

@ 3;(0) is referred to as the nominal plant model.

@ X (0) is controllable and observable

(k(3))?
(I(61))*(p(dp))?

(k(5))?
(o))

det W(6) = — #£0, detV(5) =— £0, (15)

for all &;, Jp, 6 and Jy.
o In particular, the nominal plant ¥¢(0) is also controllable and observable.
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Two dynamical systems

@ Reference signal o (t) = asin(wrt + ) is generated by a dynamical system
i’] (t) _ 0 1 1’1(f) a1 (O) _ usingo (16)
72 (F) —w? 0 r(t) |’ 2(0) awcosy |’

a®=[1 0] [ 28 } 17)

where w; > 0 has to be known and 2 € R and ¢ € R may be unknown.

and

o The disturbance d(t) = dy is generated by a dynamical system
d(t) =0-d(t), d(0)=do, (18)

and
dt) = 1-d(t), (19)

where dy € R is unknown.
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Exosystem

@ By combining (16)-(19) we get a dynamical system X, called the exosystem,

1 0 1 0
¥} -2 0 0 1 r1(0) asin ¢
g d = 0 0 0 r |, r2(0) | = | awrcose |, (20)
ar 1 0 0 d d(0) do
d 0 0 1
ie.
w S
s : ar | =| Tr |w, w(0)=uwp, (21)
d T,
where
n
w = 19 s (22)
d
with eigenvalues (the spectrum)
o (8) = {05 jwr; —jur} - (23)

e o(S)NC_ = 9.
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2 Robust control problem

Robust control system

o Uncertainty matrix

0 0 O O +50 0 0 0
10 & 0 0 | 0 o +jO 0 0
A@) = 0 0 6 0 | 0 0 or +jO 0 ’ 24)
0 0 0 o 0 0 0 dp +jO
o Uncertainty structure set Ac C CcAx4
A= {AS) € CY%: omax(A(S) <1} (25)
o Uncertain plant X (6)
x = A@W)x+B(du, x0)=x,
zc(a):{a = ADxEBOmM, D=2, ) ea, (26)
where u = 7 +d.
o Controller and exosystem
. 5CK = AKXK +BK€, xK(O) = XKO , . w i Sw’ W(O) = o,
ZK. Cyxx + Dye 25. oy = Trw,
T KK KEs d = Tw.
27)
e Error
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Error feedback control system

@ 3;(0) and Xk gives the error feedback control system X,(0)

i A(S) + B(§)DkC  B(6)Ckx | —B(8)Dx  B(5) .
2(8) : [ X ] = [ BxC Ax —Bg 0 ] K, A@G) €A,
e C 0 | I 0 ar

d
(28)
@ The unforced closed loop system ,¢(5) (cr =0,d = 0)

SHOT [ xa; ] _ { A(8) +BLK3((j5)DKc B(Z)KCK } { ;1 ] A(S) € A, 29)

o Interconnection of X (d) and Xg gives:

@ The closed loop system 3¢ (6)

i A(6) + B(6)DkC  B(8)Cx  B(6)(T4 — DkTy) .
i BxC A —BgT.

Sa(6) : ’;’j = s S A [ XK } A(S) € Ac.
¢ C 0 _T, w

(30)
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Precise requirements

The error feedback controller X is to guarantee:

RIS: Robust internal stability. The error feedback control system X,(4) is said to be robustly
internally stable if the unforced closed system X,(9) is asymptotically stable for all A(J) € A,
i.e. for all x(0) = xp, xx(0) = xxo we have

) ]
tgrgo[ e } =0, A®)E€A.. 31)

RAT: Robust asymptotic tracking (called robust regulation). The error feedback control system 3 (9) is
said to be is said to satisfy the robust asymptotic tracking condition if for all w(0) = wy,
x(0) = xp and xg (0) = xkp the closed loop system X () satisfies

tlingo e(t)y =0, A(d) € Ac. (32)
o Every controller Xg which guarantees RIS and RAT is said to be a robust controller.
o Is is seen from (29) that RIS holds if and only if

o[ A® +BODKC BE)Ck

BeC YR DL O (33)

@ Examination of RIS is a hard task and will be dealt with later on.
o Before that, we show how to deal with RAT under the assumption that RIS holds.
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Fundamental result

@ Since X(6) is controllable and observable for all A(§) € A, then there always exists a
controller (Ag, Bk, Ck, Dk) (possibly dependent of §) satisfying

o A(8) + B(5)DkC  B(5)Cxk

ByxC A ) EC

o For a controller (Ak, Bk, Ck, Dx), independent of 6 and satisfying RIS, we get necessary and
sufficient conditions for RAT:

Theorem 3.1

If for a given controller (Ak, Bk, Ck, Dx) RIS holds, then X (9) satisfies RAT if and only if there exist
11(8) € R¥*3, 1(6) € RY*3 and 3(8) € R™*3 such that

RE - { Iél(‘f()g(f)];g(g?s + B()I'(6) + B(6)T; =0, (34)
and
RN ) )
forall A(6) € Ac. If this is the case, then (Ak, Bk, Ck, Dk) is a robust controller. )

o RE stands for the regulator equation and IMP for the internal model principle.

Z. Emirsajtow, T. Barciniski Robust Control of an Observation Satellite ...

15/42




3 Characterization of a robust controller

Construction of a robust controller

@ RE has a solution (I1(), I'(9)).

o Define
0 1 0 1
P:|:0 0 1j|,R:[lOO], Q|:1j|
0 —w? 0 1

o For every controller (Ag, Bk, Ck, Dx) of order ng, which is independent of § and has the form

P 0 Q 1
Av = R*K XK By = Rk X
« {0 Av}e C K {Bv}e ’ (36)
Ck=[R G ]eR™=x  Dg=D, R,
where Ay, By, Cy, Dy are arbitrary, there always exists 3(§) € R"K %3 guch that IMP holds.
@ The controller X consists of two paralel systems
) w = Pw+Qe, ) 0 = Ayv+ Bpe,
P { Yo = Ruw, o { Yo = GCov+Doe, (57)

with 7 = yw + yo = Rw + Cyv + Dye.

o If we are able to find Ay, By, Cy, Dy that guarantee RIS, then RAT will follow and g will be a
robust controller.
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Construction of a robust controller

Y

Qy e T u «
c(6)

3
v Vo

Figure 3: Error feedback control system %, ()

o For the controller (36) RIS takes the form
A(d) + B(6)D,C B(6)R B(6)Cy
o QcC P 0 )CCo, A(S) €A, 38)
B,C 0 Ay

which is equivalent to say that the unforced closed loop system

X A(S) +B(0)Dy,C  B(6)R  B(9)Co X
Euf((S): |:w:||: QC P 0 :| |:w], 39)
4 B,C 0 Ay 4

is asymptotically stable for all A(d) € A..
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Uncertain modified plant

o Introduce the uncertain modified plant ¥,,(5) as in Figure 4.

Yw
ZZU
Yo T u o
Q 26(6)
d=0

Figure 4: Uncertain modified plant 3, (8)

@ 3,(6) has order n,, = 7 and is described by

o f-peE W

where [ x } o { Ag(né) Bmo(a) } _ [ fé(c? B(%)R } 3(85) }
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3 Characterization of a robust controller

Construction of a robust controller

@ X,¢(0) is an interconnection of ¥,,(5) and the output feedback subcontroller 3, of order ng — 2,
as it is shown in Figure 5.

Yo

Em(9)

o

Figure 5: 3,¢(0) as interconnection of 3, (5) and 33,

@ We derive the subcontroller %y such that ¥,¢(9) is internally stable for all A(5) € Ac and for
this we need the controllability and observability of £,,(9).

@ The required controllability and observability of 3, (8) for all A(d) € A, follow from
(60 (@2 + 172

det(Wn(#)) = G (32 + (150 = p6)?) #0. (41)
and
i3
det(Vin(6)) = —% (P () + (k(5e) — p(E)e?)?) £0. @2)
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Construction of a robust controller

o We distinguish the case of X, (8) without uncertainties by setting § = (J, dr, 6p, &) = 0.
o In this case the modified plant is denoted by 3, (0) and called the nominal modified plant.
2,'1(0) : {L} = |: Am (O) Bun (O) } {L] . (43)
Cm 0

« Yo

o For X,,(0) we construct a classic stabilizing controller (Ay, By, Cy, Dy) based on the full order
Luenberger state observer

|

o The output injection gain L € R7*1 is chosen such that o(Am(0) — LCy) C C—.

o Itis described as

€ = (An(0) — LC)€ + Bu(O)yo + Lav, (44)

with & = {

ST

o Then we implement the feedback control law y, = —FE, with the state feedback gain matrix
F € RY7 satisfying o(Am(0) — Bn(0)F) C C—.
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Construction of a robust controller

@ The resulting unforced closed loop system X,(0) with the nominal modified plant 3,,(0) is
internally stable.

o Finally, we obtain the subcontroller 3 in the form

. é — Am(o) — LCm — Bm(O)F | L g
Zv'[yv}_{ —F o [ (45)
ie. v=£, Ay=Au(0) —LCy —Bu(0)F, By=L, Co=—-F, Dy=0, (46)

and the controller g which guarantees the internal stability and the asymptotic tracking of the
feedback error control system X, (0) with the nominal plant 3(0).

@ Recall that if this controller satisfies RIS, then it also satisfies RAT.

@ In the next section we will show how to examine if this X g guarantees the internal stability of
the feedback error control system with the uncertain plant £ (9) for all A(6) € A..
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Modelling the uncertain plant

@ We apply the robust control theory to analyze the robustness of the controller X by deriving
a test based on the structured singular value.

@ For this purpose we will first develop a suitable model of the uncertain plant ().

@ The diagram shown in Figure 6 corresponds to the state space model (11) of the uncertain
plant £5(9).

X3 = X1 X1 =«

1 x3
cn) J

=
ey
U

k(6x)

|

s
Y
U

X =p

.7.64 X4 = J’Cz

Figure 6: Block diagram of the plant ¢ (§)
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Modelling the uncertain plant

o Using the additive formulas for uncertain parameters we can transform the diagram from
Figure 6 to the form shown in Figure 7.

X1 =«
I 1

ey
U

N

Figure 7: Block diagram of the plant 3 (§) with normalized parametric uncertainties
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R Y ob sk s s shablit B
Modelling the uncertain plant

@ In the latter diagram we introduce four fictitious signals z, zj, z, zp, entering the uncertainties
Ok, O, 61, 8p and four fictitious signals wy, wy, wy, wp, leaving uncertainties.

o If we cut out all uncertainties, then we obtain a state space model of a system Zé(o) with
inputs wy, wy, wy, Wp, U and outputs zy, zp, 21, Zp, .

o The system 2&0) is called the uncertain plant without uncertainties and is given by

= x3,
=T Jl?(é) b(0) 1 1 1 1
5= T0) Xz*x1)+1(—0)(x4*x3)+mwk+mwh* I(_O)w'JrI(_O)u’
Xy = f@(xzfxl)f@(x4fx3)f—wkawhf—w
p(0) p(0) p0) " p(0) " p0) "’
Zé(o) P WkEXZ —M;,
zy = Wy(xg —x3),
z; = W(I?(—O)(jc fx)+@(x fx)+iw +waiw+iu)
: Y 0 R ) R T R ) R ) R
k(0) b(0) 1 1
7 = Mg e T s )
« = X1.

47)
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4 Robust internal stability

Modelling the uncertain plant

° Zé(o) can be written in the matrix form

* A(0) | By | B(0) x
Zé(o) | za | = _Cw | Dw | Ew WA |, (48)
« C 0 0 u
1 Zk Wk A(0) | By | B(0) A() | By | B(0)
x=| 2 lza=|? |,wa=]| “ |,|"Cw [Dw | Ew | = | WC, | WB; | WB(0) |,
¥ a I C oo C [0 0
X4 Zp wp )
with explicit formulas
0 0 0 0 -1 1 0 0
0 0 0 0 0 0 -1 1
oo | L 1 _1 o | KO KO _b(0)  b(0)
L= 1(03 1(03 1(0) ot 10)  1(0) 10)  10) |’
L 1T, _1 KO kKO b0) b0
p(0) p(0) p(0) p(0) 0)  p(0) p(0)
We 0 0 0
0 W, 0 0
W=1 19 9o w o (50)
0 0 0 W
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Modelling the uncertain plant

o Introducing the block of uncertainties
Sae) : wa = A(8)za, (51)

we can model 3 (0) as the interconnection shown in Figure 8.

PING)!
wA ZA
A
u 250 o
e —

Figure 8: Model of the uncertain plant 3¢ (5)

@ For the interconnection, shown in Figure 8, to be well-posed we require
det(I — DwA(3)) #0, A(9) € A, (52)

which holds.
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Modelling the uncertain plant

o Itis worth to emphasize that in the factorization of the state space matrix of the uncertain
plant without uncertainties 23(0)/ ie.

A(0) | By | B(0) I10]0 A(0) | By | B(0)
Cw |Dw| Ew [ =| 0| W|O Cy | By | B(O) |, (53)
C 0 0 0|0 |1 C 0 0
the first factor matrix
11010
0|W|o0 (54)
010 |1
depends only on weights, and the second factor matrix
A(0) | By | B(0)
G | B | B(O) (55)
C 0 0

depends only on nominal parameters. We can also assume that det W # 0, which is
equivalent to the fact that all four parameters k, I, p and b are allowed to be uncertain.

o If not all of them are uncertain the model Eé(o) has to be appropriately modified.
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Control system with the uncertain plant

@ Since the uncertain plant ¥ () is modelled as in Figure 8, then the feedback error control
system can be reshaped as in Figure 9.

wA ZA
EA((;) fe——
d
le% A
T N e ZK T u ZG(O) o

Figure 9: Model of the control system with an uncertain plant 3¢ (¢)

@ Recall that g has been designed to stabilize the nominal plant 3 (0), which means that

A(0) + B(0)DxC  B(0)Cx yecC-. (56)
K

o( BxC A

Z. Emirsajtow, T. Barciniski Robust Control of an Observation Satellite ... 28/42



Control system with the uncertain plant

o In order analyze RIS we follow the classic way developed within the robust control theory.

@ Notice that if oy = 0, then Euf(é) from Figure 9 is an interconnection of some system X and
A (s) as it is shown in Figure 10.

aE)

wA ZA

XM

Figure 10: £,(J) as an interconnection of Xy and 2 A (s)

@ Simple computations show that 3, is described by

i A(0) + B(0)DkC  B(0)Ck | By x X(0) .
ZM: 5(1( = BKC AK 0 XK s |: ¥ (0) :| = |: XO :|
ZA CW + EwDKC EWCK | DW wa K Ko
(7)

o Although the internal stability of 3,(J) is essentially a state space concept it can be
examined by using transfer functions of the systems involved instead of their state space
models. However, for such an analysis the state space models have to be stabilizable and
detectable and the loop in Figure 10 has to be modified to the form shown in Figure 11.

Z. Emirsajtow, T. Barciniski Robust Control of an Observation Satellite ... 29/42



Control system with the uncertain plant

Y1 %)

A(6)

41 Y2

M(s)

Figure 11: Interconnection of 1\71(5) and A(9) for examination of the internal stability

o In Figure 11 M(s) denotes the transfer function of Sy and is given by

~ A(0) B(0)Ck | By R
M) =W | BC  Ax | 0 | = WMy(s). (58)
G B(0)Ck | B

o The matrix W allows to scale the "size" of the transfer function M (s).

° M(S) and M, (s) are stable (in the BIBO sense). A(9) is a static matrix. det W # 0 implies that
Yu is stabilizable and detectable if and only if the state space realization of My (s) is so.
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Robust internal stability

o For the interconnection in Figure 11 we get

{w@}_ A@G)(I = M(s)A(8)) ! 8 \(
M) (- M(s)A(9) T M(5)A(9)

Ms)  A@)I—M(s)A(5) ! }{m@}

2(s) (I = M(s)A(5)) o (s)

(59)
and RIS holds if and only if all the four transfer functions in (59) are proper and stable for all
A(S) € Ac.

o Since A(8) and M(s) are proper and stable we immediately get:
Lemma 4.1
() satisfies RIS if and only if
(I—M(s)AG) ™" € RHoo, A(6) € Ac. (60)

@ (60) is very hard to check and the following necessary and sufficient result makes life easier.
Lemma 4.2
The condition (60) is satisfied and, consequently, 3.(0) satisfies RIS if and only if

det(I — M(jw)A(8)) #0, A(S) € Ar, weR. (61)

= = = = =TT
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Robust internal stability

@ The main problem with (61) it that it has to be checked for all matrices A(d) € Ac and all
w e R.

@ The concept of a structured singular value turns out to be helpful since it allows to replace (61)

by a much more practical but still equivalent condition.

Definition 4.3

Letw € R. The structured singular value ;a, (M(]w)) of a matrix M (jw) for the uncertainty
structure set A, is defined by the expression

. ._i: 1
o (M) = ¢ sup{y: det( — M(jw)A(5)) £0, A() € yA} ©2)

@ Since the structure set A, is star-shaped, then for 0 < v; < 7, we have
MnAc C A (63)

@ For v < ~v* we have N
det(I — M()A() £0, A() € YA (64)
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Robust internal stability - main result

Theorem 4.4

The error feedback control system X.(0) satisfies RIS if and only if the structured singular value of the
matrix M(jw) for the structure set A¢ satisfies

pa (M(jw) <1, weR. (65)

@ For the structured singular value we have
7 (M) = pa. (M) = iy, (M) (66)
which means that scaling u by the factor «y is equivalent to scaling M (jw) or Ac.

@ In practice we compute only some maximum bound ~, of p, i.e.

sup pa (WMo(jw)) < v, (67)
we

1
and then conclude RIS of X, (6) for the scaled (new) matrix of weights —W.
Yu

@ The Robust Control Toolbox of the MATLAB package has a function mussv which returns a
series of the lower and the upper estimates of the structured singular value

M) < pa (M) < ulwr), @)z € [0,00), (68)
where the values of w; are adaptively selected by MATLAB.
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5 Numerical simulations

Numerical example - nominal plant

o Parameters of the nominal plant ¥ (0) and the reference signal o ()

N -
KO) =750 [—-], b(0) = 0.01 N-m-s], 1(0) =17 [kg-m*], p(0) =01 [kg-m?],
ra
(69)
for the reference o = asin(w,t) and the disturbance dy
deg m rrad
a=1rad], wr—l[T]—ﬁ[—], do = 0.01 [N -m], (70)
@ The nominal plant X (0)
0 0 1 0 0
0 0 0 1 0
[ Aéo) BE)O) } — | —441.17 4117 —0.0059 0.0059 | 0.5882 | . 71)
7500  —7500 0.1 —0.1 0
i 0 0 0 | 0

@ The real parameters k, b, I and p belong to the intervals
ke (kmimkmax) , be (bminybmax) , le (Iminylmax) , pE (pminypmax) s (72)

where
kmin = 6007 kmax = 9007
bmin = 0.007,  bmax = 0.013,
Imin = 1537 Imax = 1877
Prmin = 0.095,  Pmax = 0.105,
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Numerical example - nominal plant

@ The weight matrix W

We 0 0 0 150 0 0 0
1o w, o o | _| 0 0003 0 0

=19 o w o |~] 0o o o017 o | 74)
0 0 0 W, 0 o0 0 0.005

@ The feedback gain F
F=1]37.0562 —18.4681 11.6181 —2.2908 4.3166 8.1139 8.4203 ].

@ The output injection L
2.8190
2.7162
3.8733
L= | 3.7738
7.3731
4.6268
2.0938
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Numerical example - nominal plant

@ Final controller Xg

ro 1 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 0 1

0 —0.0003 0 0 0 0 0 0 0 0 1

0 0 0 —2.8 0 1 0 0 0 0 2.8190

0 0 0 —2.7 0 0 1 0 0 2.7162

0 0 0 —466.8 452 —6.8 1.4 -2 —4.8 -5 3.8733

0 0 0 7495.2 —7500 0.1 —0.1 0 0 0 3.7738

0 0 0 —6.4 0 0 0 0 1 0 7.3731

0 0 0 —3.6 0 0 0 0 0 1 4.6268

0 0 0 —1.1 0 0 —0 0 —0.0003 0 2.0938
L1 0 0 —37.0562 18.4681 —11.6181 2.2908 —4.3166 —8.1139 —8.4203 0 J
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Numerical example - nominal plant

Output
T

I T T T
0 20 a0 60 80 100 120 140 160 180 200
1is]

Figure 12: The output «(t) for £¢(0)

Error

4 |
05

0
05 al
i L i L L i L i

0 20 40 60 80 100 120 140 160 180 200

s

Figure 13: The error e(t) for 35 (0)
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5 Numerical simulations

Numerical example - nominal plant

Control torque
02 T T T T

0 20 40 60 80 100 120 140 160 180 200
1(s]

Figure 14: The control torque 7(t) for 3¢ (0)

Panel output
T T T

4 20 40 60 80 100 120 140 160 180 200
Us]

Figure 15: The panel output 3(t) for 35(0)
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Numerical example - uncertain plant

o We used the mussv MATLAB procedure to compute the maximum upper bound -y,

sup i, (M(je) < (75)
and obtained
v =1.0190 for w =1.324, (76)
with _
1.0164 = v < pa, (M(j1.324)) < v = 1.0190. (77)
o The weight matrix W rescaled by the factor v = 1.02 > -,
147.0588 0 0 0
_ 0 0.0029 0 0
Woy ='W = 0 0 01667 0 (78)
0 0 0 0.0049

o New (rescaled) intervals

kemin = 602.9412,  kmax = 897.0588,
buin = 0.0071,  bmayx = 0.0129,
Imin = 1.5333,  Imax = 1.8667,
Pmin = 0.0951,  Prmax = 0.1049.

79)

@ The controller will robustly stabilize all plants 3 () with real parameters k, b, I and p from
these new intervals and, moreover, the robust asymptotic tracking condition will hold.
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Numerical example - uncertain plant

o For the plant X (6) with the parameters
k=617.6471, b=0.0074, I=185 p=0.1044,

the state space matrix takes the form

0 0 1 0 0
0 0 0 1 0

[ A((j‘s) Bgs) } = | —333.9 3339  —0.004 0.004 | 0.5405
59155 59155 0.0704 —0.0704 | 0
1 0 0 0 | o
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5 Numerical simulations

Numerical example - uncertain plant

Output

1

08
08
04l
02

0

02
04
o8|
o8|

b

0
Ofset=n

20 40 60 80 100 120 140 160 180

Figure 16: The output «(t) for X¢ ()

Error

Ofset=n

20 40 60 80 100 120 140 160 180
tis]

Figure 17: The error e(t) for £ (6)
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5 Numerical simulations

Numerical example - uncertain plant

Control torque
02 T T T

015 - i

L L
4 20 40 60 80 100 120 140 160 180 200

Figure 18: The control torque 7(t) for X¢ ()

Panel output

0 20 40 60 EY 100 120 140 160 180 200
tis]

Figure 19: The panel output 3(t) for 3(4)
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