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Our goal

- Recommendations
- Recommendations for food substitutes in recipe datasets

Recommendation systems - automatic filtering techniques to facilitate a user
search

Recommenders' goals:
- reducing the amount of data
- selecting the more relevant data for the user



Goal

Personalized information retrieval based on:
- user preferences and their historical data analysis,
- the whole community analysis and needs (from the point of view of users and
item vendors),
- the recommended items' characteristics.



Recommenders

- Information Retrieval (Search Engines) vs. Information Filtering (Recommender Systems)
- Query information retrieving vs. Query-less search
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- Recommendation methods r 5 i | P | 9§
- Popularity-Based, Collaborative Filtering (item/user-based) L i ||
- Content-Based 2§ o

- Hybrid PP

- Evaluation & Metrics:
-  MAP@K, MAR@XK (recall at the kth recommendations), Catalogue Items Coverage

* https://github.com/microsoft/recommenders

https://github.com/statisticianinstilettos/recmetrics

https://aithub.com/dg4271/Deep-Learning-for-Recommendation-System



https://github.com/microsoft/recommenders
https://github.com/statisticianinstilettos/recmetrics

Baselines

Libree

Librec - java library

https://quoquibing.qgithub.io/librec/index.html - aadl ,,Expl.oration makes surprise

v

A Lea_diﬁg Java Library for Recommender Systems

RecBole - python library

https://recbole.io/

Datasets: 'dﬁ/lx ReCB O I e

https://github.com/RUCAIBox/RecSysDatasets
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Embeddings

- Vector representations for TEXT and other modalities

- Bag-of-words, one-hot, TF-IDF...
- Modern: Neural networks, word2vec, GloVe ~ co-occurence matrix, FastText,
n-gram/subwords, deep contextualized models

- Other types of data, uni/multimodal data

- Evaluation:
- INTRINSIC - direct (language modeling, word relations: similarity, analogy)
- EXTRINSIC - indirect (using in other tasks, e.g. POS, sentiment analysis)

Wang, B., Wang, A., Chen, F,, Wang, Y., & Kuo, C.J. (2019). Evaluating word embedding models: methods and experimental results. APSIPA Transactions on Signal and Information
Processing, 8. https://doi.org/10.1017/atsip.2019.12  https://arxiv.org/abs/1901.09785
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https://deepai.org/publication/recipe 1m-a-dataset-for-learning-cross-modal-embeddings-for-cooking-recipes-and-food-images

Marin, Javier & Biswas, Aritro & Ofli, Ferda & Hynes, Nicholas & Salvador, Amaia & Aytar, Yusuf & Weber, Ingmar & Torralba, Antonio. (2018). Recipe1M: A Dataset for
Learning Cross-Modal Embeddings for Cooking Recipes and Food Images.


https://deepai.org/publication/recipe1m-a-dataset-for-learning-cross-modal-embeddings-for-cooking-recipes-and-food-images
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* Pawtowski, M.; Wréblewska, A.; Sysko-Romanczuk, S. Effective Techniques for Multimodal Data Fusion: A Comparative Analysis. Sensors 2023,
23, 2381. https://doi.org/10.3390/s23052381
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Goal

Personalized information retrieval based on:
- user preferences and their historical data analysis,
- the whole community analysis and needs (from the point of view of users and
item vendors),
- the recommended items' characteristics.

Recipe or ingredient recommendation systems assist users in finding a
personalized and balanced diet, encouraging healthy eating habits.

A nourishing diet is critical in maintaining a person's health, yet numerous factors
influence people, and therefore it is often challenging to compose healthy recipes
and diet.

* Weiging Min et al. “A Survey on Food Computing”. ACM Comput. Surv. 52.5 (Sept. 2019). https://doi.ora/10.1145/3329168
*Tian Y, Zhang C, Metoyer R and Chawla NV (2022) Recipe Recommendation With Hierarchical Graph Attention Network. Front. Big Data 4:778417. doi: 10.3389/fdata.2021.778417
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Data

- Behavioural data - collaborative filtering and content-based recommendations

- Metadata, here:
- recipe texts (ingredient sets and instructions),
- images of the dishes ?

- Knowledge-based systems also consider additional sources of data, e.g.
nutritional ingredient values, food ontologies, thesauri, and context-based
systems regarding context, e.g. health needs and individual preferences

Datasets:
https://qgithub.com/RUCAIBox/RecSysDatasets



https://github.com/RUCAIBox/RecSysDatasets
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Representation learning - hypergraph
model
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Recommenders
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--columns
complex: :reflexive: :products

"lemon": ["orange juiced", "freshsqueezed lemon juice", "chavrie goat cheese", "blueberry vinegar"]

"chocolate fudge cake": ["powdered sugar", "stiff whipping cream", "cinnamon dolce", "chocolate
butter", "bakers white chocolate"]

"frozen strawberries": ["crushed apricots", "strawberry jello", "frozen strawberries with sugar", "flavor
gelatin", "glass apricot"]

* B. Rychalska et al: “Cleora: Graph embeddings” https://arxiv.org/pdf/2102.02302.pdf

* Sergiy Tkachuk, Anna Wrdéblewska, Jacek Dgbrowski, Szymon tukasik, “ldentifying Substitute and Complementary
Products for Assortment Optimization with Cleora Embeddings” https://arxiv.org/abs/2208.06262



https://arxiv.org/pdf/2102.02302.pdf
https://arxiv.org/search/cs?searchtype=author&query=Tkachuk%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Wr%C3%B3blewska%2C+A
https://arxiv.org/search/cs?searchtype=author&query=D%C4%85browski%2C+J
https://arxiv.org/search/cs?searchtype=author&query=%C5%81ukasik%2C+S
https://arxiv.org/abs/2208.06262

Our baselines

PPMI to model the probabilities that:

recipe and ingredient occur together
two different ingredients occur together

FastText algorithm utilizing ingredient entities
Frequent Sets algorithms

Norway
grants
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PPMI(z;y) = max (log2
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Figure 19: Visualisation of PPMI recipe oriented for chicken RecipeNLG
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Figure 21: Visualisation of PPMI recipe oriented for tofu RecipeNLG



Conclusions

e We implemented substitutes’ recommendation baselines comprising modification of PPMI, FastText
algorithms, and methods for calculating frequent itemsets.

e No benchmark datasets with gold standards to evaluate the approach. However, we utilized
visualisations and listing to be further assessed by experts in dietary and food technology.

More important issues related to our task are:

e FOOD entities are not grouped, which led to less reliable results, e.g. egg” is treated as completely
different as "egg yolk”. To overcome this, we need a limited vocabulary to assign each FOOD
entities into similar subgroups.

e The automatic recommendation results are sometimes not usable; how-ever, these results should

u be taken after imposing restrictions on dietary needs or functional attributes of the food ingredients.
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